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M E T H O D  O F  C A N O N I C A L  E L E M E N T S  F O R  

M O D E L I N G  T R A N S F E R  P R O C E S S E S  I N  M U L T I P L Y  

C O N N E C T E D  R E G I O N S  O F  A N  A R B I T R A R Y  S H A P E  

N. I. Niki tenko and Yu. N. Kol 'chik  UDC 536.24 

A r e f i n e d  m e t h o d  o f  c a n o n i c a l  e l e m e n t s  f o r  ca lcu la t ion  o f  p r o c e s s e s  o f  hea t  a n d  m a s s  t rans f e r  a n d  

de format ion  in m u l t i p l y  c o n n e c t e d  bodies o f  a c om p le x  shape  wi th  curvi l inear boundar ies  is s tated.  Resu l t s  

o f  compar i son  o f  the  data o f  n u m e r i c a l  exper imen t s  with a c c u r a t e  analyt ical  so lu t ions  are  presen ted .  

Development of numerical simulation and even wider use of it in solving urgent scientific-engineering 

problems requires the creation of universal, efficient, and, at the same time, rather simple calculation methods and 

algorithms with specified accuracy for transfer processes in multiply connected regions of an arbitrary shape with 

variable thermophysical characteristics and arbitrary boundary and initial conditions. 

In [1, 2 ], a new approach to the solution of partial differential equations for regions of an arbitrary shape 

is suggested. The approach is based on approximation of the initial differential equation by a balance equation for 

an element of a canonical shape that is constructed on a nonuniform difference grid. In this case, difference 

derivatives of the sought scalar function along the coordinate axes are determined as projections of its gradient, 

which in turn is expressed in terms of derivatives along some axes passing through the nodes of the nonuniform 

grid. This approach, called the method of canonical elements, has certain advantages with respect to simplicity of 

algorithms and accuracy of the solution as compared to known numerical methods usually used for these problems, 

in particular, the method of finite elements, which is based on the search for an extremum of the functional 

corresponding to the initial differential equation. 

In what follows we consider the problems of automation of construction of nonuniform difference grids for 

multiply connected regions of an arbitrary shape, a difference grid of elevated accuracy for the method of canonical 

elements, and the results of solution of some problems of transfer of energy and momentum in multiply connected 

deformable bodies with curvilinear boundaries. 

The method of canonical elements can be implemented, generally speaking, on arbitrary nonuniform grids. 

However, to simplify the algorithms and to make them more universal and also to provide the possibility of 

automated construction of nonuniform difference grids, it is expedient to use regularized grids. Regularization of 

grids can be performed, in particular, by positioning nodal points on the walls of coordinate surfaces and straight 

lines. For a simply connected body in Cartesian coordinates, this grid is described by the equations 

zj = z j_  1 + hzj_ I , j = 0 , 1  . . . . .  J ,  Zo = Z , z j  = z ; 

Yrnj = Y m - l , j  + h y m - 1 , j ,  m = O, 1 . . . . .  M (j) , YOj = Yj , YMj = Yj ; 

Xim j = x i _ l , m i  + i h x , i _ l , m j ,  i = 0 ,  1 .. . . .  l ( m , ] ) ,  XOm i = x m i ,  Xlm i =  Xrn i ;  

i n =  tn-1 + h t n -  1, n = 1 , 2  . . . . .  htn > O,  t o = O. 
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Here  z', y), X'mj are  the  minimum values of the coordinates,  respectively: z for points of the region, y for 

points of the cross section zj, and  x for points of the intersection line of the coordinate surfaces z = zj and y = Ymfi 
z", Y"2' Xmj are the maximum values of the coordinates for the same elements of the region. 

The  quasi-uniform grid [1 ], which may be used in solving many practical problems, is the simplest case 

of a regularized grid. For  this grid hzj --- const, hymj = hyj ~ f ( m ) ,  him j = hmj ~ f ( i ) ,  and htn = const. 

An analysis of di f ferent  versions of nonuniform difference grids in multiply connected systems of a complex 

configuration showed that  f rom the point of view of simplicity of the algorithm of solution, its universality, and 

automation of construction of grids it is expedient  to use quasi-uniform grids. By virtue of this a method is suggested 

which presuposes conventional  division of a multiply connected region into a set of simply connected subregions. 

Boundary nodal points of each of them pertain only to this subregion. They  lie on the outer  and inner boundaries 

of the body or are at a d is tance of a mesh width along the coordinate axis from the node pertaining to a neighboring 

subregion. 

In numer ica l  s imu la t ion  of t r an s f e r  processes  in regions of complex conf igura t ion  the problem of 

approximation of partial  derivatives on nonuniform grids is knotty. It is shown in 121 that in the orthogonal 

coordinates x, y the derivatives OW/Ox, OW/Oy are related to the derivatives OW/Ox' ,  OW/Oy' along arbi trar i ly 

directed axes x' and y', which make with the axis x the angles (x, x') and (x, y'), respectively, by the relations 

)/ OW OW 1 , + 01,V 1 [clan (x, x') + c t a n ( x , y ) ]  
t 

Ox sin (x, x ) Oy sin (x, y') 
(1) 

y,) [tan (x, x') + tan (x, y )  ] (2) 

The  expression for the projection of the gradient of the function W on the axis z in terms of the value of.  

the derivatives along the axes x, y, and z' is determined by 

_ Oz Oz' -- COS (z', X) - -  COS (z', y) OS (z', z ) .  (3) 
Ox Oy ) 

(1) passes over to the equality OW/Ox = OW/Ox" and (2) takes the form For a regularized grid Eq. 

OW 

Oy 

~OW ctan (x, y') OW 1 ] 
Ox Oy' sin (x, y')) " 

(4) 

The derivatives of the function w along the normal lines to the edges x = Xi+o.5.mp x -- Xi_o.5,mj, y = 

Yi,m+O.Sd' y = Yi,m-O.5,j' z = Zi, m,j+0.5, z = Zimd_O. 5 of a canonical element (a parallelepiped) constructed by the 
coordinate surfaces in the vicinity of the inner nodal point (xim p Ymj, zj) are determined as follows. The derivative 

OW/Ox with respect to the coordinate  x at the edge x = Xi+o.5,rn j is determined by a symmetric  difference relation 

Wi+l,mj- Wimj (5) 
Wx, i+O.5,mj "= hxim j 

2 with an error  of approximat ion of the order  of hxim. i. The  difference expression for the derivative OW/Ox at the 

nodal point (Xim/, Yrn), zj) with an approximation error  of the same order,  which is based on (5), has the form 

Wx,im j = axWx,i+O.5,mj q- (1 - ax) Wx,i_o.5,mj, (6) 

where a x = hx,i_ 1 ,mj / (hx,imj + hx,i-  l,mj )" 
In [2] the derivative OW/Oy with respect to the coordinate y at the edge y = Yi,m+O.5,j is determined in 

terms of the derivatives O W / O x  and OW/Oy" by a difference equation which approximates Eq. (4). In this case the 

axis y' with the origin at the point (xim j, Ymj, zj) passes through the nodal point (xi",m+Id, Ym+l,j' zj) lying on the 
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coordinate straight line y = Ym+l,j at the smallest distance from the surface x = Xim j. T h e  error  of this method of 
2 2 determination of the derivative OW/Oy has an order  h x + hy at the point of intersection of the edge y = Yi,m+O.5,j 

of the canonical element by  the axis y'. The error of approximation of the derivative 02W/Oy 2 for the point 

(xirni' Ymj' zj) turns out to be proportional to the distance of the point of intersection from the coordinate plane x = 

xim i. This error is substantial  with a large degree of nonuniformity of the difference grid. 

The  drawback ment ioned can be eliminated in the following way. On the coordinate straight line y = 

Yrn+ 1,1 two neighboring nodal  points (Xi",m + 1,1' Yrn+ 1 ,J '  zi) and (xi" + 1 ,m+ 1 d' Ym+ 1,1' zi) are selected, which lie closest 
to the coordinate surface x = xim i. Identification of these points comes down to seeking an integral value of {' 

proceeding from the requirement  of satisfaction of the condition 

I x r m + l , / -  Xim/I + Ixr+l,rn+ld - xirni [ = min (IXs,rn+l,i - Ximil + 

+ IXs+l,m+l, i - Ximj] ) for s = 1, 2 . . . . .  I -- 1). (7) 

Then  difference approximations of Eq. (4) are constructed for two cases. In the first, the axis y with the 

origin at the point (Xim j, Ymj, zj) passes through the nodal point (xi"+l,m+ld, Ym+14' zj), and in the second through 

the point (xi"+l,m+l,i, Ym+l,i' Zl)" These approximations can be presented in the form 

W;i,rn+O.5,f Wi",m+ 1 ,j -- Wire1 hx,m+ 1,i Wimj - Wi- I ,mj = + , (8) 
hyrnj hymj hx , i -  1,mj 

H/y,i,m+O.5,j = W i " + l , m + l , j -  Wimj h"x,m+l,j Wi+l m i -  Wimj 
hymj hymj hximj ' 

(9) 

w h e r e  h'x,rn + 1,] = Xirnj - xi",m+ 1 , j ;  h('x,m+ I ,j = xi"+ 1 , m +  1 ,j - Xirnj" 
Approximating equations (8) and (9) are first multiplied by constant quantities subject to determination 

and then they are summed.  The  values of the constants are found from the condition that the error  of approximation 

of the expression ob ta ined  as a result of summation for determination of the derivative OW/Oy at the point 

(Ximj, Ym+0.5' zj) of the edge y = Ym+0.5 of the considered canonical element be on the order  of h 2 2 xirni + h;mj" As a 
result we find that 

Wy,i,m+O.5,j = 
(Wi, , ,m+l, j  -- Wimj) h"x,m+l, ] + (Wi .+ l ,m+l , j  -- Wim]) hx ,m+l , j  

hymi ( h'x,m + l , j + h " x , m + l , j )  

( l o )  
2hym] 

where 

2 - wi i _ - w ; _ j , , . j ] .  (1 l )  
Wxx'irnj = hximj + hx,i+ 1 ,mj hx,i+ 1,mj hximj ) 

By expanding the functions entering the formula into a Taylor  series with respect to the central point of 

the edge y = y; ,-,,+n ~ i of the considered canonical element, we see easily ihat the error of approximation for it is 
. . . . . .  2 ~ . . . .  2 

on the order  of h x + hy. It should be noted that when h'x,m+l, j = 0 or h"x,m+l, j = 0, i.e., when one of the points 

(xi",m+l,j, Ym+l,j' zj.) or (xi"+l,m+l,j, Ym+l,j' Zl) lies in the plane x = xim P formula (10) becomes a symmetr ic  

difference expression similar to (5), which also has a second order of accuracy with respect to the mesh width of 

spatial division. 

A six-point pat tern for the arrangement  of points in the plane z = z i corresponds to approximation (10): 

the derivative OW/Oy at the point (Xim j, Ym-0.5, zj) of the straight line y = Ym-o.5,.i is de termined in terms of the 

values of the function W at five nodal points, three of which lie on the straight line y = Ymj and two on the straight 

line y = Ym+Id" 
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The  difference expression of the derivative OW/Oy at the point (Xirnj , Ym-0.5, . / '  zj) of the canonical e lement  
is given by a formula  similar  to (10): 

Wyi,m_0.5, ] = 
( W i ~  i - Wi',rn- 1,j) h'x,rn-l,j + ( Wimj - Wi'+ l ,m-  l , j )  h'x,rn- [ , j  

hy ,m- l , j  (h'x,m-,d + h"x,rn-ld) 
_ h x , m - l d  h x , m - l d  Wxx,imj. (12) 

2hy,m- 14 

Here  h',.rn_l, j ^  = Xirnj - xi ' ,m_l, j ,  h".,.m_l, = xi '+l ,m_l , j  - Xim j" 
The  difference expressions for the derivatives OW/Oy and 02W/Oy 2 at the nodal  point (xim j, Ymj' _zi) have 

the form 

Wyim j = CtyWyi, m+0.5, j + (1 - ay) Wyi,m+O.5,j , (13) 

Wy'i'm+O'5'J - Wy'i'm-O'5'J (14) 
Wyy'irnj = Ym+O.5d -- Ym-0.54 ' 

w h e r e  a y  = hy, m _ l , ] /  (hym] + hy~m_l,j). 
T h e  mixed  derivative 0 W/OxOy at the point (Xim j, Ymj' zj) is found by re la t ions  (5) and (6), where IVy is 

substi tuted for W. 

T h e  difference expression for the derivative OW/Oz at the point (xirng, Ymj' Zj+o.5) of the edge z = Zj+o. 5 of 
2 2 the canonical e lement ,  which has an er ror  on the order  of h2x + hy + hz, can be ob ta ined  in the following way. First, 

in the plane z = zj+ l the two coordinate  straight lines y = Ym",j+l and y = Ytn"+l,j+l at the smallest  distances from 

the coordiate surface y = Ymj are  de te rmined  if 

[Ym"+l,j+l -- Ymj[ + [Ym",j+l -- Y,njl = min (lYg+l,j+l - Ymj[ + 

+ ]Yg,j+l - Ymjl) for g = 1, 2 . . . . .  M - 1. (15) 

On t h e  s t r a i g h t  l i ne  y -- Yrn",j+l the  two n e i g h b o r i n g  n o d a l  p o i n t s  (x].m",y+l, Yrn",j+l, zy+l), 

(X~+l,m",j+l, Ym",j+l, Zj+l) at the smallest  distances from the coordinate surface x = xinti are found by a condition 

similar to (7). We denote as z' the axis lying on the line of intersection of the coordinate  plane x = Xim i with the 

plane containing the straight  lines y = Yrn",y+l and y = Ymy" The  derivative of W z' along the axis z' at  the point of its 

in tersect ion with the plane z = Zj+o. 5 is found ,  just  as Wy,i,m+O.5,j, using a s i x - p o i n t  pa t te rn  f o r  W~,m",j+l , 

wT+l,m"4+ l on the straight  line y = Ym"d+l' wimj' wi+l,mj' and wi_l,mj on the s t ra ight  line y = Ym]: 

(W.-[,,rn,,,j+l - Wimj) h"x,m,,,j+l "t- (W-[,+l,m.,j+l - Wimj) hlr,m,,,i+l 
wz, = h (h'x,m,,j+, + 

h'x,m,,j+ l h"x,m,,,j+ l 
2h (I) Wxx,imj'  

, = _ . . = _ h ( 1 )  h 2 where hx,m"4+ 1 Ximj XT, m",]+ 1, hx,m",]+ 1 xi"+ 1,m",j+ 1 Ximj; = [ z,j+ 1 -Jr (Yrn",j+ 1 - Ymj ) 2 ]0.5. 
T h e  derivative of Wz" at the point of intersection of the planes x = Xim ], z = z]+0. 5 and  the plane containing 

the s traight  lines y = Yrn"+l,j+l and y = Ymy is found in the same way. Finally, the derivative of  Wzim,j+O. 5 at the 

point (Ximj, Ymj' z]+0.5) is found from the values of the derivatives Wz', Wz" a n d  Wyy,im] 

Wzirn,j+0.5 = 

r t  

W z, h (1) hy,rn,,d+ 1 + Wz,, h (2) hy,m,,,j+l 

hz4+! (h'y,m",j+l + hy,m,,,j+l) 

hy,m",j+ 1 hy,m",]+ 1 i/Vyy,imj " 

2hz4+ 1 

(16) 

Here h'y,m",j + 1 = Ymj -- Ym",j+ 1' h"y,m",j+ l = Ym"+ 14+ I - Ymj" The difference expression of Wz,i,m,j_O. 5 of the derivative 

OW/Oz at the point (Xim j, Yimj' zj-0.5) is constructed similarly. The  derivatives OW/Oz  and OW2/Oz 2 at the nodal  

point (Ximj, Ym]' z.i) are  approximated  by the expressions 
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Wzimj  -~ azWzirn , j+0.5  4- (1 - az) Wzim,j+0.5 , (17) 

Wzz, imj  = (Wzirn, j+0.5 - Wzim,j+O.5)/  (Zj+o. 5 - zj_0.5) , (18) 

where a z = hzd_ l / (hzy  + hz,j_l).  The  mixed derivatives 02W/OzOx and 02W/OzOy at the nodal point (xim j, Yrny, zj) 
are de termined by Eqs. (5), (6), and (10), (12), (13), respectively, into which the values of W z calculated by (17) 

are substi tuted for W. 

A mathematical model of processes of the transfer  of energy, mass of substance, and momentum in a 

deformed body is based on the equations of thermoconcentrat ional  elasticity [3, 4 ] in a quasistationary formulat ion,  

which for constant thermophysical  and mechanical  parameters can be written in the form 

00g 
Ot - ~ ag s g r a d  (div~gs) +dOg, g , s =  1 ,2  . . . .  G ,  (19) 

g 

ktV2U + (2 + kt) grad (div U) - (2 + 2kt/3) grad (N) + F = 0 .  (z0) 

Here  N is the function of variation of a specific volume of the body in its free expansion caused by variat ion of 

tempera ture  and concentrat ion of components  [4 I, N = Z s as(O s - OsO), a s = dq /dOs /qo .  
Boundary conditions of heat and mass t ransfer  of the first, second, or third kind and initial condit ions are  

assigned for Eq. (19). For  Eq. (20) the conditions on the circuit are assigned by the displacement function U or in 

the form of a vector of external  stress p, the projections of which Px, Py, Pz on the axis x, y, z are related to internal  

stresses by relationships of the form 14, 51 

P x = CT XX COS (X, r/) + r xy COS (y, n)  + Crxz COS (z, n ) ,  

where Crxx = (2k* + 2)Ou/Ox + 2(Ov/Oy + Ow/Oz) - (2 + 2bt/3)N; Crxy = # ( O v / O x  + Ou/Oy). 
A difference approximation of Eq. (19) is constructed using a th ree- layer  explicit difference scheme [4, 6 ]: 

on+ 1 n - n . n -  1 
gimj -- 19girnj (1 + bgimj) 19girnj -- ~)girnj 

h t h t bgimj = ~ ags (Osxx,imj + Osyy,im j + 
g 

+ Oszz.irnj) + dog, g, s = 1, 2 . . . . .  G ; bgim j >- 0 .  (21) 

After an arbi t rary  choice of the mesh widths of the difference grid hximj, hymj," hz. i, and h t the values of the 

parameter  bgim j are de termined in accordance with the condition of stability of Eq. (21) 

bgim j = 0..5 (h t /A t i rn  j - 1) when h t > Atimj ; bgim j = 0 when h t <.% At imj .  (22) 

Here  Atimj = 1/[2agg(1/hxim ] 2  + 1/hymj2 + 1/h2j) ]. 
Approximations of the equation of conservation of momentum (20), solved by a t ime-dependent  technique,  

are cons t ruc ted  similarly in projections onto the  axes x, y, and  z. For  project ion (20) onto the  axis  x the  

approximation has the form 

n + l  n n n-1  

Uirn] ht u- Uimj (1 + buimj ) Uimj ht u -  uimj buimj = (2kt + 2) Uxx,imj q- ~Uyy,imj -1- 

II 
+ (t~ + 2)  Vxy,imj + QZ + 2)  Wxz , imj  - (2 + 2~/3) Nx , im  j + X ,  buim. i ~ O.  (23) 

T h e  neces sa ry  condi t ion  for s tabi l i ty  of Eq. (23) is similar to tha t  for  (22),  with Ati m = 1/{2[(2kr + 2 ) /  
2 2 

hximj + k t / h u m  j + bt/h2zj]}. 
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On the  b a s i s  of t he  m e t h o d  of  canon ica l  e l emen t s ,  wi th  a l l o w a n c e  for  the  above  d i f f e r e n c e  a p p r o x i m a t i o n s  

of par t ia l  de r iva t i ve s  a n d  d i f f e r e n t i a l  equa t ions ,  we deve loped  an  a l g o r i t h m  for  m o d e l i n g  p r o c e s s e s  of t r a n s f e r  in 

mul t ip ly  c o n n e c t e d  s y s t e m s  of so l id  b o d i e s  of an  a r b i t r a r y  shape .  T h e  pos i t ion  of the  b o u n d a r i e s  of t he  region  can  

be a s s igned  a n a l y t i c a l l y  or  b y  a t a b l e  of  c o o r d i n a t e s  of  a ce r t a in  n u m b e r  of  b o u n d a r y  po in t s ,  on the  bas i s  of which  

the  c o o r d i n a t e s  of  b o u n d a r y  n o d a l  p o i n t s  a n d  d i r ec t ion  cos ines  of o u t e r  no rma l s  at  these  po in t s  a r e  d e t e r m i n e d  by  

a special  s u b p r o g r a m .  Before  c a l c u l a t i n g  the  g r id  func t ions ,  the  a r r a y s  of the  c o o r d i n a t e s  of  n o d a l  points  of t he  

region ,  the weight_param_eters_bim j, a n d  the  va lues  of i' a n d  i" for  t w o - d i m e n s i o n a l  p rob l ems  a n d  a d d i t i o n a l l y  of the  

values  of rn', m", i )_l  , i i - I  , i)+l fo r  t h r e e - d i m e n s i o n a l  p r o b l e m s  a r e  c o n s t r u c t e d  by  spec ia l  s u b p r o g r a m s .  

To j u d g e  t h e  e f f ic iency  a n d  a c c u r a c y  of t he  f o r m u l a t e d  t e c h n i q u e  we solved n u m e r i c a l l y ,  u s i n g  the  p rog ram 

complex ,  some  p r o b l e m s  of h e a t  c o n d u c t i o n  a n d  d e f o r m a t i o n  in r e g i o n s  with cu rv i l inea r  b o u n d a r i e s  for  which an  

accura te  so lu t ion  can  be o b t a i n e d .  T h e s e  p r o b l e m s  inc lude ,  in p a r t i c u l a r ,  an a x i s y m m e t r i c  p r o b l e m  of hea t  a n d  

mass  t r a n s f e r  fo r  a n  u n b o u n d e d  ho l low c y l i n d e r  m a d e  of a m a t e r i a l  wi th  cons t an t  t h e r m o p h y s i c a l  cha rac t e r i s t i c s ,  

which in c y l i n d r i c a l  c o o r d i n a t e s  is r e d u c e d  to a o n e - d i m e n s i o n a l  p r o b l e m ;  this  p rob lem has  a n  a c c u r a t e  ana ly t i ca l  

solut ion u n d e r  t h e  f i r s t - ,  s e c o n d , -  a n d  t h i r d - k i n d  b o u n d a r y  c o n d i t i o n s  of hea t  t r a n s f e r  13, 7 ]. In  t he  solut ion of 

t w o - d i m e n s i o n a l  d o u b l y - c o n n e c t e d  p r o b l e m s  of t r a n s f e r  for a hol low c y l i n d e r  r 0 _< r <_% R in C a r t e s i a n  coo rd ina t e s ,  

the  mesh wid th  a l o n g  the  ax i s  y was  c o n s i d e r e d  un i fo rm in the  r e g ions  0 < y _< R - r 0, R - r o < y _< R + r 0, a n d  

R + r 0 < y < 2R.  T w o  n o d a l  po in t s  l ay  at  a smal l  d i s t ance  on the  c o o r d i n a t e  l ines y = 0 a n d  y = 2R.  I noda l  po in ts  

lay on the remaining c o o r d i n a t e  l i ne s  y = Ym (m = 2, 3 . . . . .  M - 1) of t he  d i f fe rence  gr id.  T h e  m e s h  wid th  hxm was 

cons ide red  u n i f o r m  on the  s e g m e t s  0 < y < R - r o a n d  R + r o < y < 2R a n d  also be tween  the  s u r f a c e s  r = r o a n d  

r = R on the  s e g m e n t  R - r0 <-- y <_- R + r o. On the  s t r a igh t  l ines  y -- R - r o a n d  y =  R + r o t h e  pos i t ion  of t he  

surface  r = r o was  d e t e r m i n e d  b y  two c lose ly  l y ing  noda l  poin ts .  T h e  mean  dev ia t ion  of t he  va lues  of re la t ive  

t e m p e r a t u r e  f o u n d  n u m e r i c a l l y  f rom an  a c c u r a t e  ana ly t i ca l  so lu t ion  a t  r 0 = R/2,  1 = 10, M = 17 a n d  b o u n d a r y  

condi t ion  of t h e  t h i r d  k ind  was  ~ = 0 . 4 1 % ,  a n d  the  m a x i m u m  was  l ima x = 2.970; H = 0.2370 a n d  l ima x = 2.270 at  

1 = 20 and  M = 33. 

In a d j u s t m e n t  of the  p r o b l e m  a n d  e s t i m a t i o n  of the  a c c u r a c y  of the  r e su l t s  of c a l cu l a t i on  of m o m e n t u m  

t rans fe r ,  as  a s t a n d a r d  we u s e d  an  a c c u r a t e  a n a l y t i c a l  so lu t ion  of an  a x i s y m m e t r i c  s t a t i o n a r y  p r o b l e m  of the  s t r e s sed  

s ta te  of a hol low c y l i n d e r  ( th is  s t a t e  b e i n g  c a u s e d  by  n o n u n i f o r m i t y  of  t he  f ie lds  of t e m p e r a t u r e  a n d  concen t r a t i on  

of componen t s  a n d  a l so  by  t h e  ef fec t  of  u n i f o r m l y  d i s t r i b u t e d  p r e s s u r e s  P0 on the  i n n e r  c y l i n d r i c a l  su r f ace  of r a d i u s  

r = r 0 and  p on  the  o u t e r  su r f ace  of  r a d i u s  r = R a n d  of a r e s u l t a n t  fo rce  Pz a long  the c y l i n d e r  a x i s  z),  which can  

be p r e sen t ed  in  t h e  fo rm 

r ( 1  - v) 
u ( 0  - I (1 + v) f Nrdr + 

r 0 

R r 2 ( I  - 3v) + r 2 (1  +v) f Nrdr+ 

R 2 _ ro 2 r 0 

rvPz t 1 + _ 2 + _ 2 l r2 (1  - v ) ( P o  r 2 - p R  2) + (1 +v) r~R 2 ( p O - p )  l,  (24) 
F_~ (R 2 r0) Er (R 2 r0) 

' ~ Z  w 

2 
2 R 2V POro -- pR 2 Pz 

f Nrdr R 2 2 2 " 
R 2 -  r 0 r 0 E - r  0 E p r ( R  2 - % )  

(25) 

Here  U is t he  f u n c t i o n  of d i s p l a c e m e n t  of the  po in t s  of the  c y l i n d e r  in a r ad i a l  d i rec t ion ;  e z is the  r e l a t i ve  e longa t ion  

a l o n g  the  a x i s  z. I t  s h o u l d  be  n o t e d  t h a t  a t  r 0 = 0 r e l a t i o n s  (24 ) ,  (25) a r e  a s o l u t i o n  of  t h e  p r o b l e m  of 

t h e r m o c o n c e n t r a t i o n a l  e l a s t i c i t y  fo r  a so l id  c y l i n d e r  of r ad iu s  R. On the  bas is  of the  so lu t ion  (24) ,  (25) a n d  the  

c o r r e s p o n d i n g  conve r s ion  f o r m u l a s  we  f o u n d  the  c o m p o n e n t s  of t he  vec to r  of t r a n s f e r  a n d  t e n s o r s  of d e f o r m a t i o n s  

a n d  s t r e s ses  fo r  so l id  a n d  ho l low c y l i n d e r s  in C a r t e s i a n  c o o r d i n a t e s .  
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Fig. 1. Distr ibution of relative values of t empera ture  (a) and general ized stress 

(b) in an iron cyl inder  with two channels.  

The  mean er ror  of the numerical  solution of problems of momentum t rans fe r  in a hollow cyl inder ,  when 

the funct ion U is given for the bounda ry  points, was ~ = 0 .82% at I = 10 and M = 17, and with a s s ignmen t  of 

ex te rna l  stresses p, Po, and  Pz the er ror  was ~ = 4 .2%.  

Figure 1 presents ,  as an  example ,  the results of calculation using the program complex of the  fields of 

relat ive t empera tu re s -T  = ( T -  Tin)/(Tou t - Tin) and  general ized stresses ~ - - o r / I E ( T o u  t - Tin)l" 105 in an iron 

cy l inder  of d iameter  d with two channels  of diameters  0.35d and 0.25d. It should be noted that a change  in the 

configurat ion of the region leads only to reassignment  of the a r rays  of the coordinates of its boundary  points.  

Numerical  exper imen t s  indicate the efficiency and high accuracy of the presented  technique and  the 

possibil i ty of construct ing on its basis a unique program complex for simulating t ransfer  processes in multiply 

connec ted  systems of an a rb i t r a ry  configuration with variable thermophysical  character is t ics  for a r b i t r a r y  initial 

and  boundary  conditions. 

N O T A T I O N  

~9, t empera ture  or concentra t ion of the component;  U, vector of t ransfer  with projections u, v, and  w on the 

axes  of coordinates x, y, and  z;/~, 2, Lam~ coefficients; E, elasticity modulus; v, Poisson coefficient; N,  function 

of var ia t ion of the specific volume of the body; F, mass  force with projections X, Y, and  Z on the axes  x, y, z; p, 

vector  of external s t ress  with projections Px' Py, Pz on the axes  x, y,z; R, values of the radius r for the  inner  and  

outer  surfaces of the cylinder;  t, t ime; hximj, hyim, hzj, hin, mesh widths of the difference grid along the  coordinate  

axes  x, y, z, tt; ~ ,  densi ty  of the sources of heat and  mass.  Subscripts: in, inner; out, outer.  
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